

Trade, Firm Delocation, and Optimal Climate Policy

Farid Farrokhi ¹ Ahmad Lashkaripour ²

WIIW Webinar: January 2021

¹Purdue University

²Indiana University

Background

Existing Climate Agreements Have Failed to Deliver!

Notwithstanding this progress, it has up to now proven difficult to induce countries to join in an international agreement with significant reductions in emissions. The fundamental reason is the strong incentives for free-riding in current international climate agreements. *Free-riding* occurs when a party receives the benefits of a public good without contributing to the costs. In the case of the international climate-change policy, countries have an incentive to rely on the emissions reductions of others without taking proportionate domestic abatement. To this is

Two Proposals Going Forward

Proposal #1: Use trade policy as a 2nd best solution

- Climate-conscious governments can use trade policy (i.e., carbon tariffs) to influence transboundary carbon emissions.
- Example: EU's carbon tariffs can lower carbon emissions in Asia.

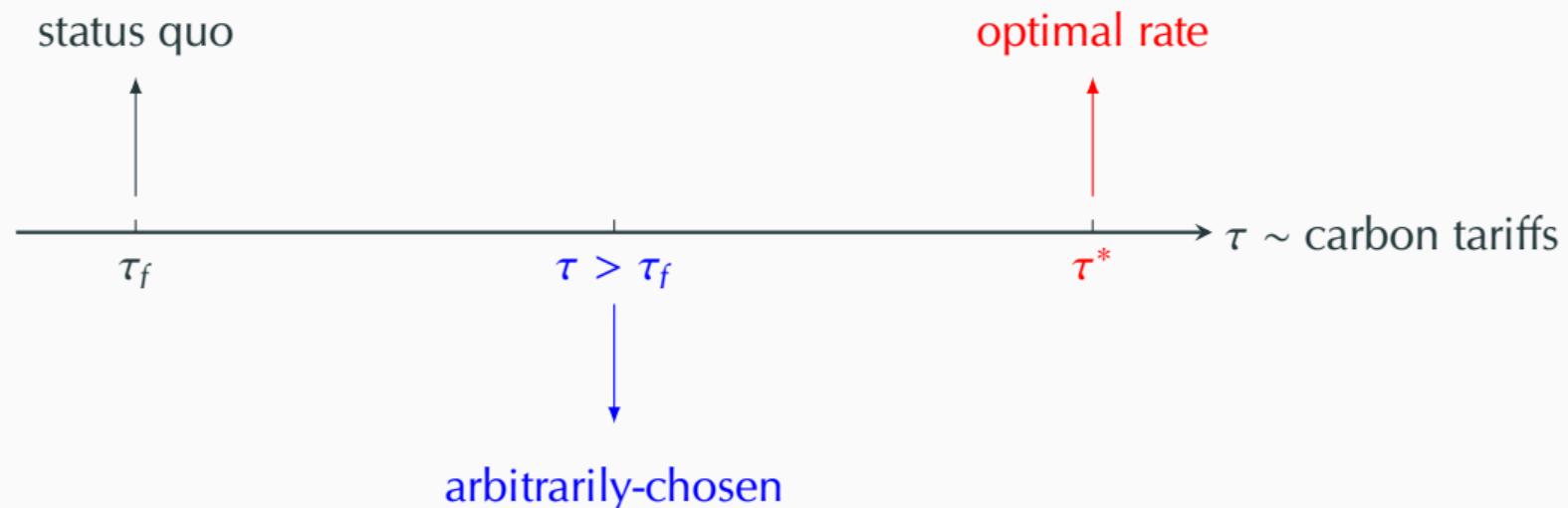
Proposal #2: Use trade penalties to enforce climate cooperation

- Climate-conscious governments can form a ***Climate Club***.
- Members of the Climate Club can use collective trade penalties to prompt non-members to join the club.

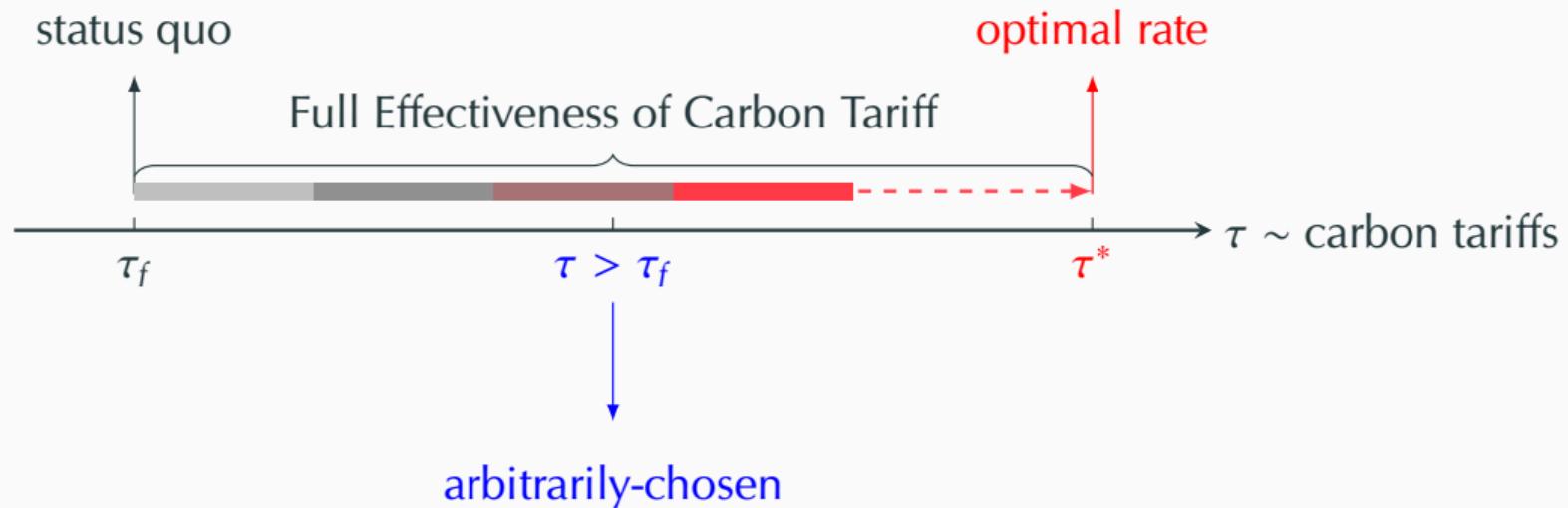
Existing Assessments of Proposals #1 and #2

- Multiple studies have analyzed some variation of *Proposals #1* and *#2*.
- Existing studies, though, exhibit some limitations:
 1. Theoretical studies often overlook firm-delocation in response to policy, scale economies in abatement, and multilateral carbon leakage.
 2. Quantitative studies often analyze arbitrarily-chosen (i.e., sub-optimal) carbon tariffs or trade sanctions → cannot identify the full effectiveness of Proposals 1 and 2.

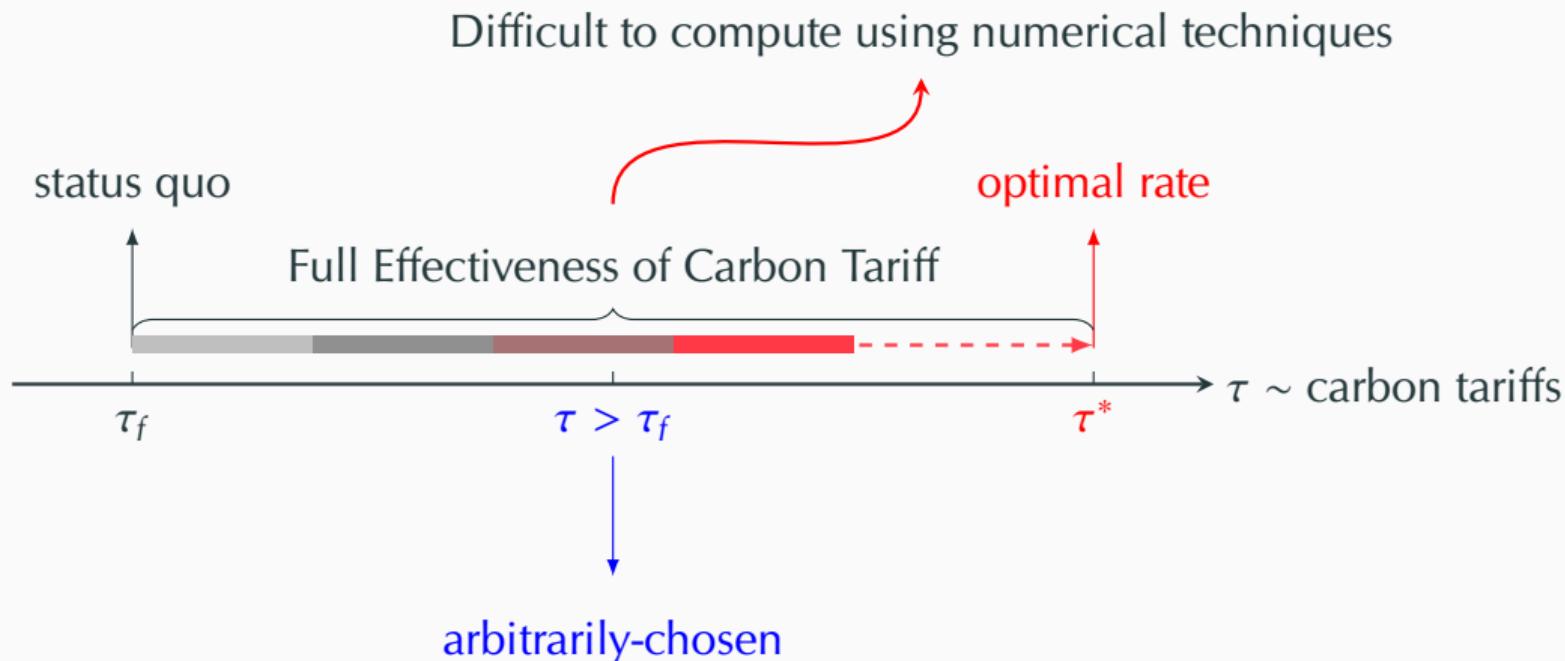
Quantitative Assessments of Proposals #1 and #2



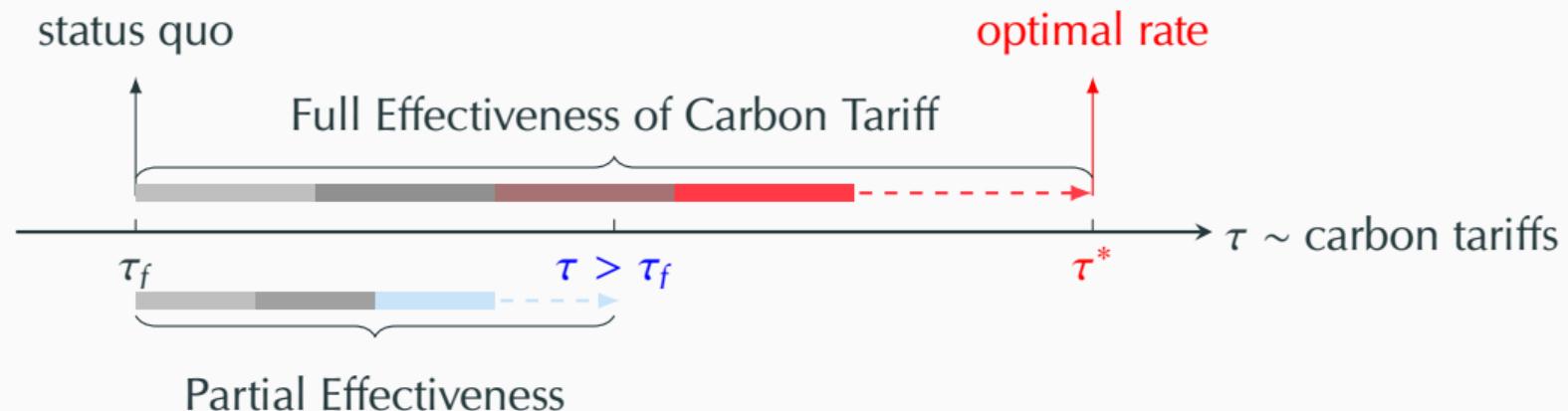
The Trade Literature



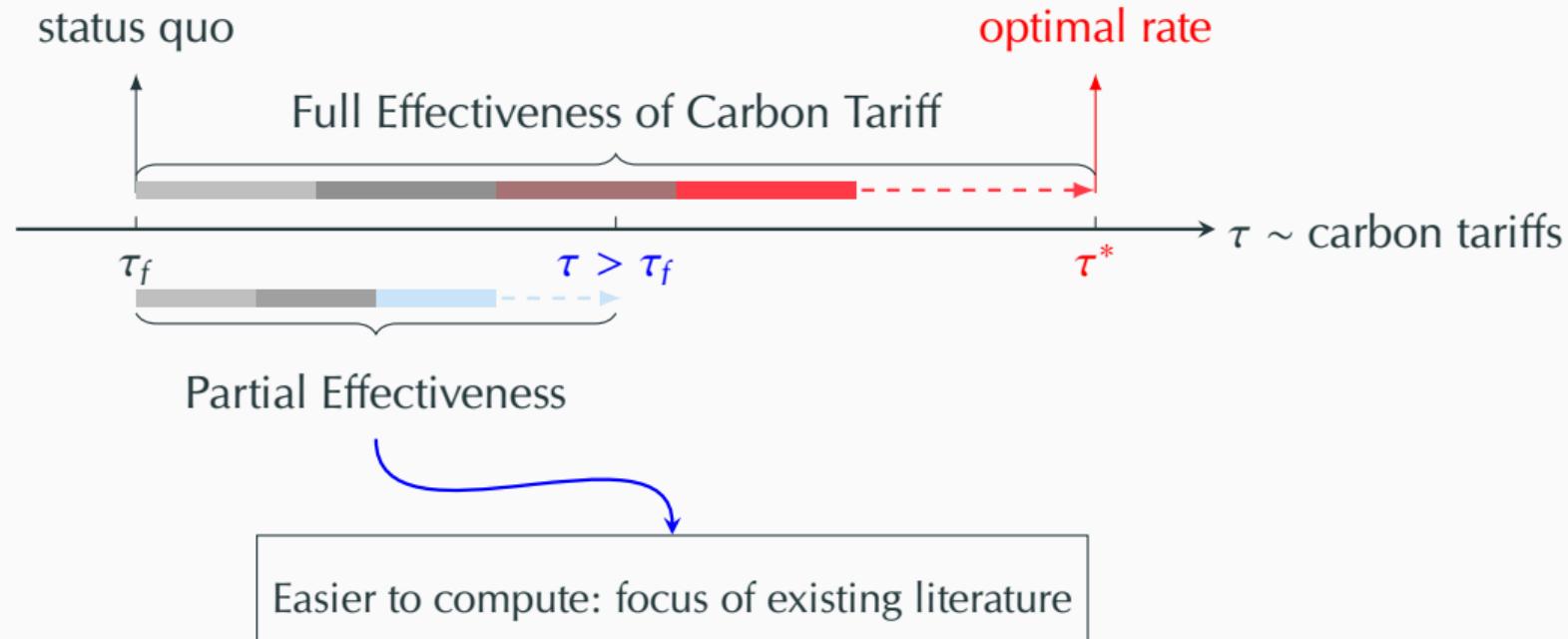
The Trade Literature



The Trade Literature



The Trade Literature



This Paper: *Contribution to the Literature*

- We develop a GE multi-industry, multi-country model of trade with transboundary carbon externality and scale economies in production/abatement.
- We derive simple analytic formulas for *optimal local carbon taxes and border adjustment carbon tariffs*.
- We use our analytic tax formulas to the following ends:
 1. Uncover previously-unknown trade-offs facing carbon tariffs
 2. Bypass computational obstacles that have impeded the previous literature → uncover the full-effectiveness of Proposals #1 and #2.

Theoretical Framework

The Economic Environment

- Many countries: $i, j, n = 1, \dots, N$
 - Country i is populated by L_i workers, each of whom supplies one unit of labor.
 - Labor is the sole factor of production
- Many industries: $k, g = 1, \dots, \mathcal{K}$
 - Each industry is served by many firms (index ω)
- Market structure: monopolistic competition + free entry
 - Free entry creates industry-level economies of scale

Notation: Good's Indexes

- Goods are indexed by origin–destination–industry

good $ij, k \sim$ origin i – destination j – industry k

- Aggregate *supply-side* variables are indexed by origin–industry

subscript $i, k \sim$ origin i – industry k

- Aggregate *demand-side* variables are indexed by destination–industry

subscript $j, k \sim$ destination j – industry k

Notation: Good's Indexes

- Goods are indexed by origin–destination–industry

good $ij, k \sim$ origin i – destination j – industry k

- Aggregate *supply-side* variables are indexed by origin–industry

subscript $i, k \sim$ origin i – industry k

- Aggregate *demand-side* variables are indexed by destination–industry

subscript $j, k \sim$ destination j – industry k

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i

$$V_i \left(\tilde{\mathbf{P}}_i, Y_i \right) = \max_{\mathbf{Q}_i} U_i(\mathbf{Q}_i) \quad \text{s.t.} \quad \sum_k \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_i$$

national income

- $\mathbf{Q}_i \equiv \{Q_{i,k}\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\}$ ~ “consumer” price index of industry-level composite.
- The Marshallian demand function for *industry k* goods in *market i*

$$Q_{i,k} = \mathcal{D}_{i,k} \left(\tilde{\mathbf{P}}_i, Y_i \right)$$

- The Cobb-Douglas case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^K Q_{i,k}^{e_{i,k}} \rightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i

$$V_i \left(\tilde{\mathbf{P}}_i, Y_i \right) = \max_{\mathbf{Q}_i} U_i(\mathbf{Q}_i) \quad \text{s.t.} \quad \sum_k \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_i$$

national income

- $\mathbf{Q}_i \equiv \{Q_{i,k}\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\}$ ~ “consumer” price index of industry-level composite.
- The Marshallian demand function for *industry k* goods in *market i*

$$Q_{i,k} = \mathcal{D}_{i,k} \left(\tilde{\mathbf{P}}_i, Y_i \right)$$

- The Cobb-Douglas case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^K Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i

$$V_i \left(\tilde{\mathbf{P}}_i, Y_i \right) = \max_{\mathbf{Q}_i} U_i(\mathbf{Q}_i) \quad \text{s.t.} \quad \sum_k \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_i$$

national income

- $\mathbf{Q}_i \equiv \{Q_{i,k}\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\}$ ~ “consumer” price index of industry-level composite.
- The Marshallian demand function for *industry k* goods in *market i*

$$Q_{i,k} = \mathcal{D}_{i,k} \left(\tilde{\mathbf{P}}_i, Y_i \right)$$

- The Cobb-Douglas case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^K Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i

national income

$$V_i(\tilde{\mathbf{P}}_i, Y_i) = \max_{\mathbf{Q}_i} U_i(\mathbf{Q}_i) \quad \text{s.t.} \quad \sum_k (\tilde{P}_{i,k} Q_{i,k}) = Y_i$$

- $\mathbf{Q}_i \equiv \{Q_{i,k}\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\}$ ~ “consumer” price index of industry-level composite.
- The Marshallian demand function for *industry k* goods in *market i*

$$Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$$

- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^K Q_{i,k}^{e_{i,k}} \rightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

Preferences: Nested-CES within Industries

- Cross-national aggregator: $Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k-1}{\sigma_k}} \right)^{\frac{\sigma_k}{\sigma_k-1}}$
- Sub-national aggregator: $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k-1}{\gamma_k}} \right)^{\frac{\gamma_k}{\gamma_k-1}}$
- The demand facing an firm-level variety ω (origin j –destination i –industry k):

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{P_{ji,k}} \right)^{-\gamma_k} \left(\frac{\tilde{P}_{ji,k}}{P_{i,k}} \right)^{-\sigma_k} \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$$

Preferences: Nested-CES within Industries

- Cross-national aggregator: $Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k-1}{\sigma_k}} \right)^{\frac{\sigma_k}{\sigma_k-1}}$
- Sub-national aggregator: $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k-1}{\gamma_k}} \right)^{\frac{\gamma_k}{\gamma_k-1}}$
- The demand facing an firm-level variety ω (origin j –destination i –industry k):

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{P_{ji,k}} \right)^{-\gamma_k} \left(\frac{\tilde{P}_{ji,k}}{P_{i,k}} \right)^{-\sigma_k} \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$$

price index (origin j –destination i –industry k)

Preferences: Nested-CES within Industries

- Cross-national aggregator: $Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k-1}{\sigma_k}} \right)^{\frac{\sigma_k}{\sigma_k-1}}$
- Sub-national aggregator: $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k-1}{\gamma_k}} \right)^{\frac{\gamma_k}{\gamma_k-1}}$
- The demand facing an firm-level variety ω (origin j –destination i –industry k):

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{P_{ji,k}} \right)^{-\gamma_k} \left(\frac{\tilde{P}_{ji,k}}{P_{i,k}} \right)^{-\sigma_k} \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$$

price index (origin j –destination i –industry k)

price index (destination i –industry k)

Production and Firms

- Firms compete under monopolistic competition and free entry
- A firm located in *origin i*–*industry k* faces the following costs:
 1. **Entry cost:** $w_i f_{i,k}^e$
 2. **Production/delivery cost** per unit of output: $\frac{\tau_{ij,k} w_i}{\varphi_{i,k}(\omega)}$
 3. **Abatement cost:** a fraction $a_{i,k}(\omega)$ of inputs are allocated to abatement
- CO₂ emission per unit of output = $\left[1 - a_{i,k}(\omega)\right]^{\frac{1}{\alpha_k} - 1}$

Production and Firms

- Firms compete under monopolistic competition and free entry
- A firm located in *origin i–industry k* faces the following costs:
 - 1. **Entry cost:** $w_i f_{i,k}^{fe}$
 - 2. **Production/delivery cost** per unit of output: $\frac{\tau_{ij,k} w_i}{\varphi_{i,k}(\omega)}$
 - 3. **Abatement cost:** a fraction $a_{i,k}(\omega)$ of inputs are allocated to abatement
- CO_2 emission per unit of output = $\left[1 - a_{i,k}(\omega)\right]^{\frac{1}{\alpha_k} - 1}$

Production and Firms

- Firms compete under monopolistic competition and free entry

- A firm located in *origin i–industry k* faces the following costs:

1. **Entry cost:** $w_i f_{i,k}^{fe}$

wage rate

2. **Production/delivery cost** per unit of output: $\frac{\tau_{ij,k} w_i}{\varphi_{i,k}(\omega)}$

iceberg trade cost

firm-level productivity

3. **Abatement cost:** a fraction $a_{i,k}(\omega)$ of inputs are allocated to abatement

- CO₂ emission per unit of output = $\left[1 - a_{i,k}(\omega)\right]^{\frac{1}{\alpha_k} - 1}$

Production and Firms

- Firms compete under monopolistic competition and free entry

- A firm located in *origin i–industry k* faces the following costs:

1. **Entry cost:** $w_i f_{i,k}^{fe}$

wage rate

2. **Production/delivery cost** per unit of output: $\frac{\tau_{ij,k} w_i}{\varphi_{i,k}(\omega)}$

iceberg trade cost

firm-level productivity

3. **Abatement cost:** a fraction $a_{i,k}(\omega)$ of inputs are allocated to abatement

- CO₂ emission per unit of output = $\left[1 - a_{i,k}(\omega)\right]^{\frac{1}{\alpha_k} - 1}$

Production and Firms

- Firms compete under monopolistic competition and free entry

- A firm located in *origin i–industry k* faces the following costs:

1. **Entry cost:** $w_i f_{i,k}^{fe}$

wage rate

2. **Production/delivery cost** per unit of output: $\frac{\tau_{ij,k} w_i}{\varphi_{i,k}(\omega)}$

iceberg trade cost

firm-level productivity

3. **Abatement cost:** a fraction $a_{i,k}(\omega)$ of inputs are allocated to abatement

- CO₂ emission per unit of output = $\left[1 - a_{i,k}(\omega)\right]^{\frac{1}{\alpha_k} - 1}$

emission elasticity

Summarizing the Production Side

- We can summarize the *producer* price and CO₂ emission associated with *origin i-industry k* as a function of total output, $Q_{i,k} \equiv \sum_{j \in \mathbb{C}} d_{ij,k} Q_{ij,k}$, and abatement, $a_{i,k}$:

[producer price]

$$P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{i,k}^{-\frac{1}{\gamma_k}}$$

[CO₂ emission]

$$Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\alpha_k} + \frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

- The special case w/ constant-returns to scale: $\frac{1}{\gamma_k} \rightarrow 0$

Summarizing the Production Side

- We can summarize the *producer* price and CO₂ emission associated with *origin i-industry k* as a function of total output, $Q_{i,k} \equiv \sum_{j \in \mathbb{C}} d_{ij,k} Q_{ij,k}$, and abatement, $a_{i,k}$:

[producer price]

$$P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{i,k}^{-\frac{1}{\gamma_k}}$$

[CO₂ emission]

$$Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\alpha_k} + \frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

- The special case w/ constant-returns to scale: $\frac{1}{\gamma_k} \rightarrow 0$

Summarizing the Production Side

- We can summarize the *producer* price and CO₂ emission associated with *origin i-industry k* as a function of total output, $Q_{i,k} \equiv \sum_{j \in \mathbb{C}} d_{ij,k} Q_{ij,k}$, and abatement, $a_{i,k}$:

[producer price]

$$P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{i,k}^{-\frac{1}{\gamma_k}}$$

scale effects in production

[CO₂ emission]

$$Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\alpha_k} + \frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

- The special case w/ constant-returns to scale: $\frac{1}{\gamma_k} \rightarrow 0$

Summarizing the Production Side

- We can summarize the *producer* price and CO₂ emission associated with *origin i-industry k* as a function of total output, $Q_{i,k} \equiv \sum_{j \in \mathbb{C}} d_{ij,k} Q_{ij,k}$, and abatement, $a_{i,k}$:

[producer price]

$$P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

[CO₂ emission]

$$Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\alpha_k} + \frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

scale effects in production

scale effects in abatement

- The special case w/ constant-returns to scale: $\frac{1}{\gamma_k} \rightarrow 0$

Summarizing the Production Side

- We can summarize the *producer* price and CO₂ emission associated with *origin i-industry k* as a function of total output, $Q_{i,k} \equiv \sum_{j \in \mathbb{C}} d_{ij,k} Q_{ij,k}$, and abatement, $a_{i,k}$:

[producer price]

$$P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

[CO₂ emission]

$$Z_{i,k} = \bar{z}_{i,k} (1 - a_{i,k})^{\frac{1}{\alpha_k} + \frac{1}{\gamma_k} - 1} Q_{i,k}^{1 - \frac{1}{\gamma_k}}$$

scale effects in production

scale effects in abatement

- The special case w/ constant-returns to scale: $\frac{1}{\gamma_k} \rightarrow 0$

Instruments of Policy

- From country i 's perspective, the market equilibrium is inefficient for 3 reasons:
 1. Firms do not internalize their carbon externality
 2. Industries exhibit differential markups \rightarrow misallocation
 3. There is unexploited export/import market power vis-à-vis the rest of the world.
- Governments have access to a complete set of policy instruments \rightarrow they can correct all the inefficiencies listed above and reach the 1st-best outcome.

Instruments of Policy

- From country i 's perspective, the market equilibrium is inefficient for 3 reasons:
 1. Firms do not internalize their carbon externality
 2. Industries exhibit differential markups → misallocation
 3. There is unexploited export/import market power vis-à-vis the rest of the world.
- Governments have access to a complete set of policy instruments → they can correct all the inefficiencies listed above and reach the *1st-best* outcome.

Instruments of Policy

- Import tariffs, export subsidies, and industrial subsidies create a wedge b/w *producer prices* (P) and *consumer prices* (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + \mathbf{t}_{ij,k}}{(1 + \mathbf{x}_{ij,k})(1 + \mathbf{s}_{ij,k})} P_{ij,k}$$

- Carbon taxes regulate abatement:

$$\text{Carbon tax} \sim \mathbf{\tau}_{i,k} \xrightarrow{\text{cost minimization}} (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{W_i / \bar{\varphi}_{i,k}}{\mathbf{\tau}_{i,k}} \right)^{\alpha_k}.$$

Instruments of Policy

- Import tariffs, export subsidies, and industrial subsidies create a wedge b/w *producer prices* (P) and *consumer prices* (\tilde{P}):

Import tax collected by country j

$$\tilde{P}_{ij,k} = \frac{1 + \mathbf{t}_{ij,k}}{(1 + \mathbf{x}_{ij,k})(1 + \mathbf{s}_{i,k})} P_{ij,k}$$

- Carbon taxes regulate abatement:

$$\text{Carbon tax} \sim \mathbf{\tau}_{i,k} \xrightarrow{\text{cost minimization}} (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{W_i / \bar{\varphi}_{i,k}}{\mathbf{\tau}_{i,k}} \right)^{\alpha_k}.$$

Instruments of Policy

- Import tariffs, export subsidies, and industrial subsidies create a wedge b/w *producer prices* (P) and *consumer prices* (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})} P_{ij,k}$$

Import tax collected by country j

export subsidy offered by country i

- Carbon taxes regulate abatement:

$$\text{Carbon tax } \sim \tau_{i,k} \xrightarrow{\text{cost minimization}} (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{W_i / \bar{\varphi}_{i,k}}{\tau_{i,k}} \right)^{\alpha_k}.$$

Instruments of Policy

- Import tariffs, export subsidies, and industrial subsidies create a wedge b/w *producer prices* (P) and *consumer prices* (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})} P_{ij,k}$$

export subsidy offered by country i

Import tax collected by country j

industrial subsidy offered by country i

- Carbon taxes regulate abatement:

$$\text{Carbon tax} \sim \tau_{i,k} \xrightarrow{\text{cost minimization}} (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{W_i / \bar{\varphi}_{i,k}}{\tau_{i,k}} \right)^{\alpha_k}.$$

Instruments of Policy

- Import tariffs, export subsidies, and industrial subsidies create a wedge b/w *producer prices* (P) and *consumer prices* (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})} P_{ij,k}$$

export subsidy offered by country i

Import tax collected by country j

industrial subsidy offered by country i

- Carbon taxes regulate abatement:

$$\text{Carbon tax} \sim \tau_{i,k} \xrightarrow{\text{cost minimization}} (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{W_i / \bar{\varphi}_{i,k}}{\tau_{i,k}} \right)^{\alpha_k}.$$

Equilibrium for a given Vector of Taxes ($\mathbf{t}, \mathbf{x}, \mathbf{s}, \boldsymbol{\tau}$)

1. Consumption choices are optimal:
$$\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1+t_{ji,k}}{(1+x_{ji,k})(1+s_{j,k})} P_{ji,k} \end{cases}$$
2. Production choices are optimal:
$$\begin{cases} P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{ij,k}^{-\frac{1}{\gamma_k}} \\ (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k}\right)^{\alpha_k} \left(\frac{w_i / \bar{\varphi}_{i,k}}{\tau_{i,k}}\right)^{\alpha_k} \end{cases}$$
3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^N \sum_{k=1}^K \left[(1 - \alpha_k \frac{\gamma_k - 1}{\gamma_k}) P_{ij,k} Q_{ij,k} \right]$
4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s}, \boldsymbol{\tau})$

Equilibrium for a given Vector of Taxes ($\mathbf{t}, \mathbf{x}, \mathbf{s}, \boldsymbol{\tau}$)

1. Consumption choices are optimal:
$$\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1+t_{ji,k}}{(1+x_{ji,k})(1+s_{j,k})} P_{ji,k} \end{cases}$$
2. Production choices are optimal:
$$\begin{cases} P_{ij,k} = \bar{d}_{ij,k} \bar{p}_{ii,k} w_i (1 - a_{i,k})^{\frac{1}{\gamma_k} - 1} Q_{ij,k}^{-\frac{1}{\gamma_k}} \\ (1 - a_{i,k}) = \left(\frac{\alpha_k}{1 - \alpha_k} \right)^{\alpha_k} \left(\frac{w_i / \bar{\varphi}_{i,k}}{\tau_{i,k}} \right)^{\alpha_k} \end{cases}$$
3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^N \sum_{k=1}^K \left[(1 - \alpha_k \frac{\gamma_k - 1}{\gamma_k}) P_{ij,k} Q_{ij,k} \right]$
4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s}, \boldsymbol{\tau})$

tax revenues

- Let $\mathbf{T}_i \equiv (\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \boldsymbol{\tau}_i)$ denote country i 's vector of taxes, and let $\mathbf{T} \equiv (\mathbf{T}_i, \mathbf{T}_{-i})$ denote the global vector of taxes.
- Welfare in country i is the sum of the indirect utility from consumption and the disutility from **global** CO₂ emissions:

$$W_i(\mathbf{T}) \equiv \underbrace{V_i(Y_i(\mathbf{T}), \tilde{\mathbf{P}}_i(\mathbf{T}))}_{\text{utility from consumption}} - \underbrace{\sum_{n=1}^N \sum_{k=1}^K \delta_{ni,k} Z_{n,k}(\mathbf{T})}_{\text{disutility from CO}_2}$$

- Let $\mathbf{T}_i \equiv (\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \boldsymbol{\tau}_i)$ denote country i 's vector of taxes, and let $\mathbf{T} \equiv (\mathbf{T}_i, \mathbf{T}_{-i})$ denote the global vector of taxes.
- Welfare in country i is the sum of the indirect utility from consumption and the disutility from **global** CO₂ emissions:

$$W_i(\mathbf{T}) \equiv V_i \left(Y_i(\mathbf{T}), \tilde{\mathbf{P}}_i(\mathbf{T}) \right) - \sum_{n=1}^N \sum_{k=1}^{\mathcal{K}} \delta_{ni} Z_{n,k}(\mathbf{T})$$

- Let $\mathbf{T}_i \equiv (\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \tau_i)$ denote country i 's vector of taxes, and let $\mathbf{T} \equiv (\mathbf{T}_i, \mathbf{T}_{-i})$ denote the global vector of taxes.
- Welfare in country i is the sum of the indirect utility from consumption and the disutility from **global** CO₂ emissions:

$$W_i(\mathbf{T}) \equiv V_i\left(Y_i(\mathbf{T}), \tilde{\mathbf{P}}_i(\mathbf{T})\right) - \sum_{n=1}^N \sum_{k=1}^{\mathcal{K}} \delta_{ni} Z_{n,k}(\mathbf{T})$$

importance of origin n

- Let $\mathbf{T}_i \equiv (\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \tau_i)$ denote country i 's vector of taxes, and let $\mathbf{T} \equiv (\mathbf{T}_i, \mathbf{T}_{-i})$ denote the global vector of taxes.
- Welfare in country i is the sum of the indirect utility from consumption and the disutility from **global** CO₂ emissions:

$$W_i(\mathbf{T}) \equiv V_i\left(Y_i(\mathbf{T}), \tilde{\mathbf{P}}_i(\mathbf{T})\right) - \sum_{n=1}^N \sum_{k=1}^K \delta_{ni} Z_{n,k}(\mathbf{T})$$

importance of origin n

CO₂ emission's from origin n –industry k

Country i 's Optimal Policy Problem

- A non-cooperative government's optimal policy $\mathbb{T}_i^* \equiv (\mathbf{t}_i^*, \mathbf{x}_i^*, \mathbf{s}_i^*, \tau_i^*)$ maximizes national welfare taking taxes in the RoW as given:

$$(\mathbf{t}_i^*, \mathbf{x}_i^*, \mathbf{s}_i^*, \tau_i^*) = \arg \max W_i \left(\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \tau_i; \bar{\mathbb{T}}_{-i} \right)$$

- The unilaterally optimal policy does *not* internalize:
 1. Country i 's **carbon externality** on the rest of the world
 2. Country i 's **terms-of-trade externality** on the rest of the world

Country i 's Optimal Policy Problem

- A non-cooperative government's optimal policy $\mathbb{T}_i^* \equiv (\mathbf{t}_i^*, \mathbf{x}_i^*, \mathbf{s}_i^*, \tau_i^*)$ maximizes national welfare taking taxes in the RoW as given:

$$(\mathbf{t}_i^*, \mathbf{x}_i^*, \mathbf{s}_i^*, \tau_i^*) = \arg \max W_i \left(\mathbf{t}_i, \mathbf{x}_i, \mathbf{s}_i, \tau_i; \bar{\mathbb{T}}_{-i} \right)$$

- The unilaterally optimal policy does *not* internalize:
 1. Country i 's **carbon externality** on the rest of the world
 2. Country i 's **terms-of-trade externality** on the rest of the world

Theorem: *Country i 's Unilaterally Optimal Policy*

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$$

$$[\text{industrial subsidy}] \quad 1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$$

$$[\text{import tariff}] \quad 1 + t_{ji,k}^* = 1 + \omega_{ji,k} + \tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]$$

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

uniform~industry-blind

carbon-blind

[import tariff] $1 + t_{ji,k}^* = 1 + \omega_{ji,k} + \tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}$

[export subsidy] $1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]$

Theorem: *Country i 's Unilaterally Optimal Policy*

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$$

$$[\text{industrial subsidy}] \quad 1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$$

$$[\text{import tariff}] \quad 1 + t_{ji,k}^* = \underbrace{1 + \omega_{ji,k}}_{\text{ToT-improving}} + \tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \underbrace{\left(1 + \frac{1}{\varepsilon_{ij,k}}\right)}_{\text{ToT-improving}} \left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k} \right]$$

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff] $1 + t_{ji,k}^* = \underbrace{1 + \omega_{ji,k}}_{\text{ToT-improving}} + \tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}$

inverse export supply elasticity

[export subsidy] $1 + x_{ij,k}^* = \underbrace{\left(1 + \frac{1}{\varepsilon_{ij,k}}\right)}_{\text{ToT-improving}} \left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k} \right]$

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff] $1 + t_{ji,k}^* = \underbrace{1 + \omega_{ji,k}}_{\text{ToT-improving}} + \tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}$

inverse export supply elasticity

[export subsidy] $1 + x_{ij,k}^* = \underbrace{\left(1 + \frac{1}{\varepsilon_{ij,k}}\right)}_{\text{ToT-improving}} \left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k} \right]$

import demand elasticity

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

[import tariff] $1 + t_{ji,k}^* = 1 + \omega_{ji,k} + \underbrace{\tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}}_{\text{carbon adjustment}}$

[export subsidy] $1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \underbrace{\left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]}_{\text{carbon adjustment}}$

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

CO₂ per dollar value

[import tariff] $1 + t_{ji,k}^* = 1 + \omega_{ji,k} + \underbrace{\tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}}_{\text{carbon adjustment}}$

[export subsidy] $1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \underbrace{\left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]}_{\text{carbon adjustment}}$

Theorem: *Country i 's Unilaterally Optimal Policy*

[carbon tax] $\tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii}$

[industrial subsidy] $1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$

CO₂ per dollar value

correction for scale effects

[import tariff] $1 + t_{ji,k}^* = 1 + \omega_{ji,k} + \underbrace{\tilde{\delta}_{ji} v_{j,k} \frac{\gamma_k - 1}{\gamma_k}}_{\text{carbon adjustment}}$

[export subsidy] $1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \underbrace{\left[1 + \frac{\gamma_k - 1}{\gamma_k} \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]}_{\text{carbon adjustment}}$

Theorem: *Country i 's Unilaterally Optimal Policy*

Constant-Returns to Scale ($\gamma_k \rightarrow \infty$)

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii} \quad [\text{industrial subsidy}] \quad s_{i,k}^* = 0$$

$$[\text{import tariff}] \quad 1 + t_{ji,k}^* = 1 + \tilde{\delta}_{ji} v_{j,k}$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]$$

Theorem: *Country i 's Unilaterally Optimal Policy*

Constant-Returns to Scale ($\gamma_k \rightarrow \infty$)

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \tilde{\delta}_{ii} \quad [\text{industrial subsidy}] \quad s_{i,k}^* = 0$$

$$[\text{import tariff}] \quad 1 + t_{ji,k}^* = 1 + \tilde{\delta}_{ji} v_{j,k}$$
$$-1 - (\sigma_k - 1)(1 - \lambda_{ij,k})$$
$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \left(1 + \frac{1}{\varepsilon_{ij,k}}\right) \left[1 + \sum_{n \neq i} \tilde{\delta}_{ni} v_{n,k} \lambda_{nj,k}\right]$$

A Summary of Our Optimal Policy Result

- Local carbon taxes are uniform across industries.
- Industrial subsidies are **carbon-blind**: They solely restore marginal cost-pricing.
- $\text{Cov}(\nu_k, 1/\gamma_k) > 0$ \longrightarrow scale effects diminish the effectiveness of carbon tariffs.
- $\text{Cov}(\nu_k, 1/\sigma_k) < 0$ \longrightarrow **ToT-optimal** trade policy exhibits environmental bias.

A Summary of Our Optimal Policy Result

- Local carbon taxes are uniform across industries.
- Industrial subsidies are **carbon-blind**: They solely restore marginal cost-pricing.
- $\text{Cov}(\nu_k, 1/\gamma_k) > 0$ \longrightarrow scale effects diminish the effectiveness of carbon tariffs.
- $\text{Cov}(\nu_k, 1/\sigma_k) < 0$ \longrightarrow **ToT-optimal** trade policy exhibits environmental bias.

A Summary of Our Optimal Policy Result

- Local carbon taxes are uniform across industries.
- Industrial subsidies are **carbon-blind**: They solely restore marginal cost-pricing.
- $\text{Cov}(\nu_k, 1/\gamma_k) > 0$ \longrightarrow scale effects diminish the effectiveness of carbon tariffs.
- $\text{Cov}(\nu_k, 1/\sigma_k) < 0$ \longrightarrow ToT-optimal trade policy exhibits environmental bias.

A Summary of Our Optimal Policy Result

- Local carbon taxes are uniform across industries.
- Industrial subsidies are **carbon-blind**: They solely restore marginal cost-pricing.
- $\text{Cov}(\nu_k, 1/\gamma_k) > 0$ \longrightarrow scale effects diminish the effectiveness of carbon tariffs.
- $\text{Cov}(\nu_k, 1/\sigma_k) < 0$ \longrightarrow **ToT-optimal** trade policy exhibits environmental bias.

Global Climate Cooperation

Optimal Cooperative Policy

- Previously, we characterized optimal policy for a non-cooperative government.
- Now, suppose governments act *cooperatively* to maximize global welfare.
- The optimal policy choice under *global climate cooperation* is the following:

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \sum_{j \in \mathbb{C}} \tilde{P}_j \delta_{ij}$$

$$[\text{industrial subsidy}] \quad 1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$$

$$[\text{trade taxes/subsidies}] \quad \mathbf{x}_i^* = \mathbf{t}_i^* = \mathbf{0}$$

Optimal Cooperative Policy

- Previously, we characterized optimal policy for a non-cooperative government.
- Now, suppose governments act *cooperatively* to maximize global welfare.
- The optimal policy choice under *global climate cooperation* is the following:

$$[\text{carbon tax}] \quad \tau_{i,k}^* = \tau_i^* = \sum_{j \in \mathbb{C}} \tilde{P}_j \delta_{ij}$$

internalizes carbon externality
across all locations

$$[\text{industrial subsidy}] \quad 1 + s_{i,k}^* = \frac{\gamma_k}{\gamma_k - 1}$$

$$[\text{trade taxes/subsidies}] \quad \mathbf{x}_i^* = \mathbf{t}_i^* = \mathbf{0}$$

Mapping Theory to Data

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \tilde{\delta}_{ni}, w_n \bar{L}_n, Y_n\}_{ni,k} \quad \mathcal{B}_E = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \delta_{ni}, w_n \bar{L}_n, Y_n\}_{ni,k} \quad \mathcal{B}_e = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

expenditure share

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, \mathbf{r}_{ni,k}, \rho_{i,k}, \tilde{\delta}_{ni}, w_n \bar{L}_n, Y_n\}_{ni,k} \quad \mathcal{B}_e = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

sales share

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \tilde{\delta}_{ni}, w_n \bar{L}_n, Y_n\}_{ni,k} \quad \mathcal{B}_e = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

preciveied cost of CO_2

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \tilde{\delta}_{ni}, \textcolor{orange}{w_n \bar{L}_n}, \textcolor{orange}{Y_n}\}_{ni,k} \quad \mathcal{B}_e = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

national accounts data

Sketch of Optimization-Free Quantitative Strategy

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 1. Use hat-algebra notation \rightarrow express optimal tax formulas in changes
 2. Use hat-algebra notation \rightarrow express equilibrium conditions in changes
 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *welfare* and CO_2 *emissions* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_V \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, \tilde{\delta}_{ni}, w_n \bar{L}_n, Y_n\}_{ni,k}$$

$$\mathcal{B}_E = \{\sigma_k, \gamma_k, \alpha_k\}_k$$

estimable parameters

Data on Trade, Production, and CO₂ Emissions

Data on trade and production

- Source: 2009 World Input-Output Database (WIOD).
- 33 Countries + an aggregate of the rest of the world
- 19 broadly-defined Industries

Data on CO₂ emissions

- Source: 2009 WIOD environmental accounts.
- We calculate CO₂ equivalent emissions based on global warming potential:

$$Z = Z_{\text{CO}_2} + 28 \times Z_{\text{CH}_4} + 265 \times Z_{\text{N}_2\text{O}}$$

Estimating Structural Elasticities

Emission Elasticity $\sim \alpha_k$

Estimated Values

- We infer $\alpha_{i,k}$ from applied carbon taxes and CO₂ intensities:

$$\text{cost minimization} \quad \rightarrow \quad \alpha_{i,k} = \frac{\gamma_k}{\gamma_k - 1} \tau_{i,k} v_{i,k}$$

- Data on $\tau_{i,k}$ are from EUROSTAT and OECD-PINE.

Markup $\sim \gamma_k / (\gamma_k - 1)$

- We estimate $\frac{\gamma_k}{\gamma_k - 1}$ using De Loecker's (2012, *AER*) methodology.
- Data on firms' financial accounts are from COMPUSTAT.

Trade Elasticity $\sim \sigma_k$

- We use the trade elasticities estimated by Caliendo & Parro (2014, *ReStud*)
- Ongoing: estimate σ_k by merging trade data from the WIOD with tariff data.

Estimating Structural Elasticities

Emission Elasticity $\sim \alpha_k$

- We infer $\alpha_{i,k}$ from applied carbon taxes and CO₂ intensities:

$$\text{cost minimization} \rightarrow \alpha_{i,k} = \frac{\gamma_k}{\gamma_k - 1} \tau_{i,k} v_{i,k}$$

- Data on $\tau_{i,k}$ are from EUROSTAT and OECD-PINE.

carbon intensity

Markup $\sim \gamma_k / (\gamma_k - 1)$

- We estimate $\frac{\gamma_k}{\gamma_k - 1}$ using De Loecker's (2012, *AER*) methodology.
- Data on firms' financial accounts are from COMPUSTAT.

Trade Elasticity $\sim \sigma_k$

- We use the trade elasticities estimated by Caliendo & Parro (2014, *ReStud*)
- Ongoing: estimate σ_k by merging trade data from the WIOD with tariff data.

Estimating Structural Elasticities

Emission Elasticity $\sim \alpha_k$

- We infer $\alpha_{i,k}$ from applied carbon taxes and CO₂ intensities:

$$\text{cost minimization} \quad \longrightarrow \quad \alpha_{i,k} = \frac{\gamma_k}{\gamma_k - 1} \tau_{i,k} v_{i,k}$$

- Data on $\tau_{i,k}$ are from EUROSTAT and OECD-PINE.

Markup $\sim \gamma_k / (\gamma_k - 1)$

- We estimate $\frac{\gamma_k}{\gamma_k - 1}$ using De Loecker's (2012, *AER*) methodology.
- Data on firms' financial accounts are from COMPUSTAT.

Trade Elasticity $\sim \sigma_k$

- We use the trade elasticities estimated by Caliendo & Parro (2014, *ReStud*)
- Ongoing: estimate σ_k by merging trade data from the WIOD with tariff data.

Main Quantitative Findings

The Effectiveness of EU's Unilateral Policy

- Consider a scenario where the E.U. implements its unilaterally optimal policy, T_{EU}^* , and the rest of the world is passive.
- EU's avg. border-adjustment carbon tariffs on imports $\simeq 3.5\%$ Graphical Illustration
- EU's avg. border-adjustments carbon subsidy to export $\simeq 3.8\%$ Graphical Illustration
- Global CO₂ emissions will go down by a modest **0.4%**

The Non-cooperative Nash Equilibrium

- Suppose all countries *non-cooperatively* and *simultaneously* erect their optimal border-adjustment carbon tariffs/subsidies (as part of T_i^*).
- Global CO₂ emissions will go down by **3.1%** \simeq **3.2%** of the CO₂ reduction possible under global climate cooperation (i.e., 3.1/95.5%).
- The average country loses more than **16%** of its CO₂-adjusted real GDP under the non-cooperative Nash equilibrium.
- Under global climate cooperation the average country gains **44%** in terms of CO₂-adjusted real GDP.

The Non-cooperative Nash Equilibrium

- Suppose all countries *non-cooperatively* and *simultaneously* erect their optimal border-adjustment carbon tariffs/subsidies (as part of T_i^*).
- Global CO₂ emissions will go down by **3.1% \simeq 3.2%** of the CO₂ reduction possible under global climate cooperation (i.e., 3.1/95.5%).
- The average country loses more than **16%** of its CO₂-adjusted real GDP under the non-cooperative Nash equilibrium.
- Under global climate cooperation the average country gains **44%** in terms of CO₂-adjusted real GDP.

The Non-cooperative Nash Equilibrium

- Suppose all countries *non-cooperatively* and *simultaneously* erect their optimal border-adjustment carbon tariffs/subsidies (as part of T_i^*).
- Global CO₂ emissions will go down by **3.1% \simeq 3.2%** of the CO₂ reduction possible under global climate cooperation (i.e., 3.1/95.5%).
- The average country loses more than **16%** of its CO₂-adjusted real GDP under the non-cooperative Nash equilibrium.
- Under global climate cooperation the average country gains **44%** in terms of CO₂-adjusted real GDP.

The Consequences of Non-Cooperative Policies: *Select Countries*

Country	Increasing Returns to Scale				Constant Returns to Scale			
	Non-Cooperative		Global Cooperation		Non-Cooperative		Global Cooperation	
	ΔCO_2	ΔW	ΔCO_2	ΔW	ΔCO_2	ΔW	ΔCO_2	ΔW
EU	0.0%	-32.2%	-91.1%	85.8%	-0.7%	1.9%	-91.2%	83.7%
BRA	-8.8%	-19.2%	-95.7%	73.8%	-8.3%	1.5%	-95.3%	72.2%
CHN	1.9%	-5.3%	-97.0%	18.8%	0.8%	0.5%	-97.1%	18.3%
MEX	-0.6%	-8.0%	-95.6%	23.1%	-3.7%	-2.9%	-95.9%	20.5%
USA	0.1%	-13.4%	-95.4%	34.3%	-1.5%	0.3%	-95.6%	32.8%
Global	-3.1%	-16.5%	-95.5%	44.0%	-3.3%	-0.9%	-95.6%	42.4%

Cross-national differences in welfare gains and CO₂ reduction are driven by

- differences in market power *vis-a-vis* the RoW
- differences in disutility from CO₂ emissions

The Consequences of Non-Cooperative Policies: *Select Countries*

Country	Increasing Returns to Scale				Constant Returns to Scale			
	Non-Cooperative		Global Cooperation		Non-Cooperative		Global Cooperation	
	ΔCO_2	ΔW	ΔCO_2	ΔW	ΔCO_2	ΔW	ΔCO_2	ΔW
EU	0.0%	-32.2%	-91.1%	85.8%	-0.7%	1.9%	-91.2%	83.7%
BRA	-8.8%	-19.2%	-95.7%	73.8%	-8.3%	1.5%	-95.3%	72.2%
CHN	1.9%	-5.3%	-97.0%	18.8%	0.8%	0.5%	-97.1%	18.3%
MEX	-0.6%	-8.0%	-95.6%	23.1%	-3.7%	-2.9%	-95.9%	20.5%
USA	0.1%	-13.4%	-95.4%	34.3%	-1.5%	0.3%	-95.6%	32.8%
Global	-3.1%	-16.5%	-95.5%	44.0%	-3.3%	-0.9%	-95.6%	42.4%

Cross-national differences in welfare gains and CO₂ reduction are driven by

- differences in market power *vis-a-vis* the RoW
- differences in disutility from CO₂ emissions

The Efficacy of Trade Penalties in a Climate Club Model



Summary of Findings

- Non-cooperative border adjustment carbon tariffs/subsidies have a modest effect on global CO₂ emissions.
- Overlooking *scale economies* or *firm-delocation* overstates the efficacy of carbon tariffs at reducing CO₂ emissions.
- The Climate Club model with **optimal** trade penalties looks promising.
- **Ongoing work:** We are analyzing the Climate Club model in greater depth.

Thank You.

Our Dual Approach to Characterizing \mathbb{T}^*

1. Use duality + reformulate the optimal policy problem as one where the government chooses the optimal vector of prices linked to its economy (rather than directly choosing trade taxes).
2. Use standard envelope conditions (e.g., *Roy's identity, Shephard's lemma*) + derive additional envelope conditions that indicate wage and circular income effects are welfare-neutral at the optimum.
3. Use the primitive properties of Marshallian demand functions (i.e., *Cournot aggregation, homogeneity of degree zero*) to establish uniqueness of the optimal policy schedule.

Return

Our Dual Approach to Characterizing \mathbb{T}^*

1. Use duality + reformulate the optimal policy problem as one where the government chooses the optimal vector of prices linked to its economy (rather than directly choosing trade taxes).
2. Use standard envelope conditions (e.g., *Roy's identity, Shephard's lemma*) + derive additional envelope conditions that indicate wage and circular income effects are welfare-neutral at the optimum.
3. Use the primitive properties of Marshallian demand functions (i.e., *Cournot aggregation, homogeneity of degree zero*) to establish uniqueness of the optimal policy schedule.

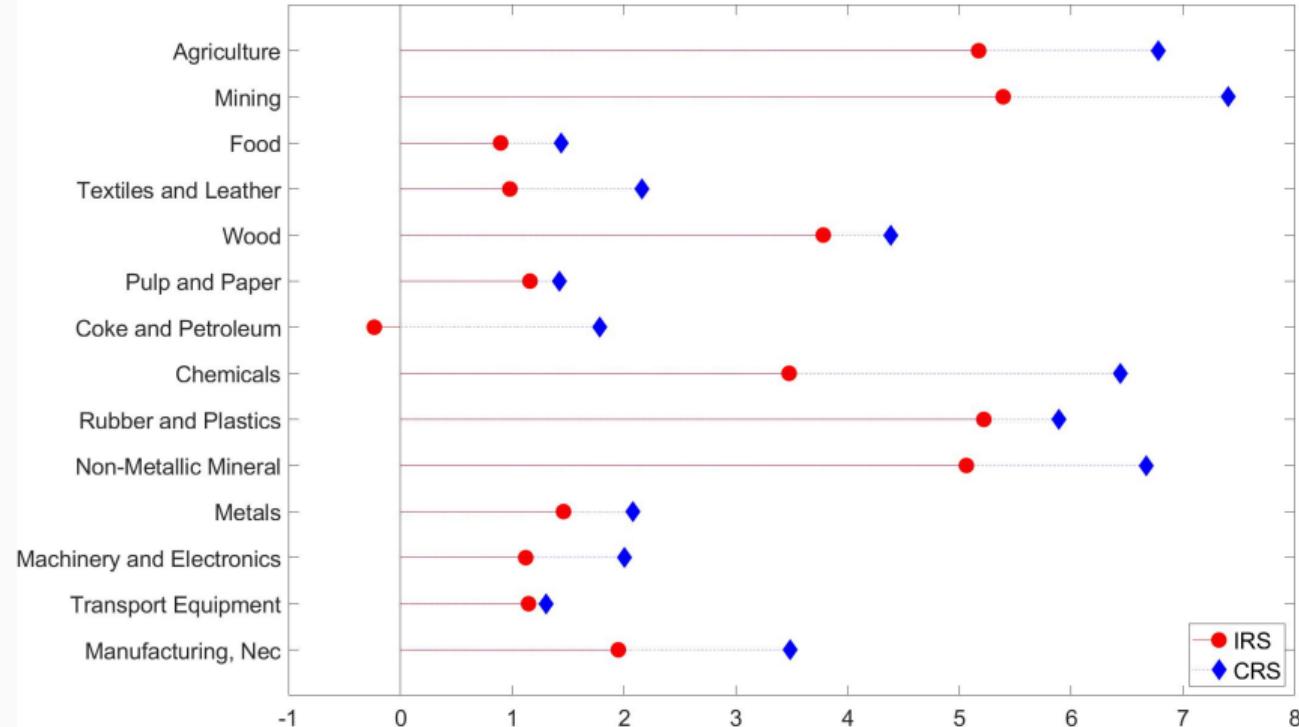
Return

Our Dual Approach to Characterizing \mathbb{T}^*

1. Use duality + reformulate the optimal policy problem as one where the government chooses the optimal vector of prices linked to its economy (rather than directly choosing trade taxes).
2. Use standard envelope conditions (e.g., *Roy's identity, Shephard's lemma*) + derive additional envelope conditions that indicate wage and circular income effects are welfare-neutral at the optimum.
3. Use the primitive properties of Marshallian demand functions (i.e., *Cournot aggregation, homogeneity of degree zero*) to establish uniqueness of the optimal policy schedule.

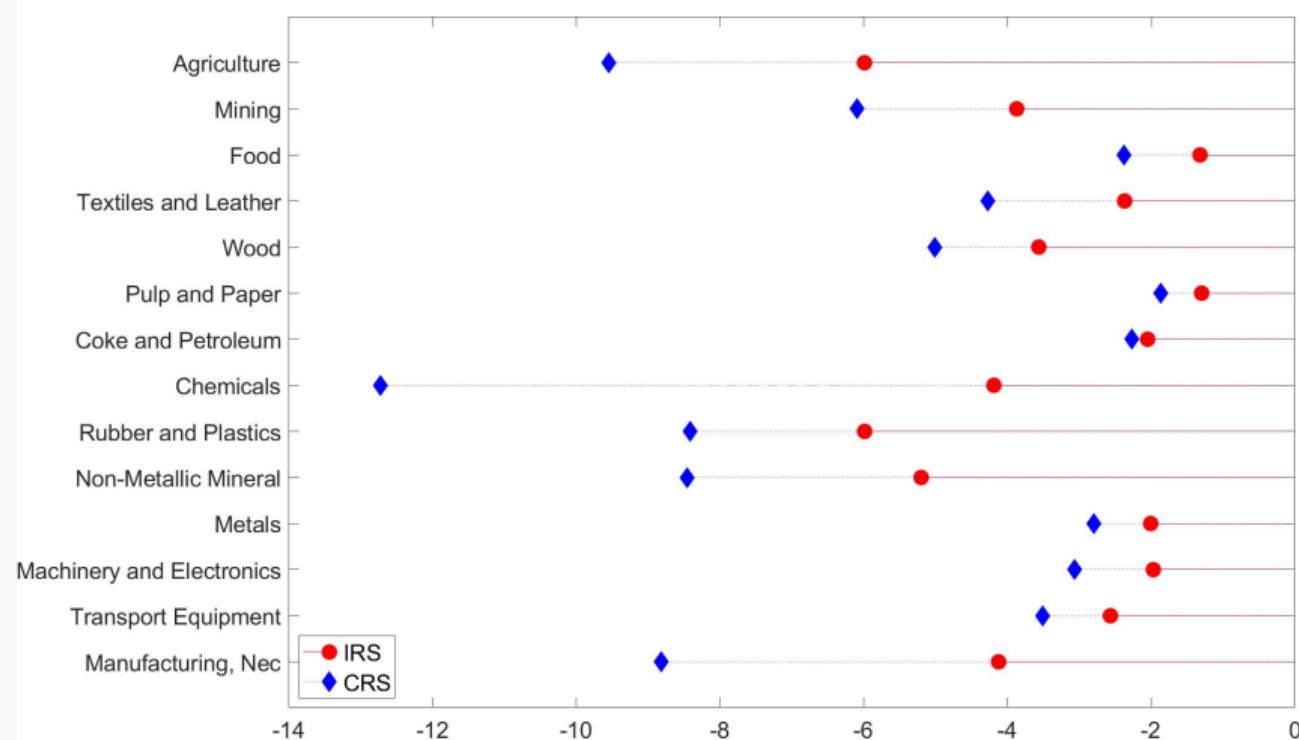
[Return](#)

E.U.'s Optimal Import Tariff Schedule



Return

E.U.'s Optimal Export Subsidy Schedule



Return

Estimated Elasticities: *WIOD Industry Categories 1-9*

Industry	Carbon Intensity (v)	Emission Elasticity (α)	Trade Elasticity (σ)	Markup ($\frac{\gamma}{\gamma-1}$)
1 Agriculture	1,589	0.044	8.11	1.464
2 Mining	1,372	0.025	15.72	1.529
3 Food	84	0.011	2.55	1.698
4 Textile	81	0.011	5.56	2.109
5 Wood	109	0.014	10.83	1.278
6 Paper	135	0.008	9.07	1.296
7 Refined Petroleum	376	0.015	51.08	1.178
8 Chemicals	295	0.032	4.75	2.064
9 Plastics	50	0.010	1.66	1.272

Estimated Elasticities: *WIOD Industry Categories 10-19*

Industry	Carbon Intensity (v)	Emission Elasticity (α)	Trade Elasticity (σ)	Markup ($\frac{\gamma}{\gamma-1}$)
10 Nonmetallic Minerals	1,422	0.026	2.76	1.488
11 Metals	372	0.009	6.14	1.239
12 Electronics & Machinery	26	0.007	6.06	1.501
13 Motor Vehicles	30	0.006	0.69	1.211
14 Other Manufacturing	46	0.012	5	1.913
15 Electricity, Gas and Water	3,791	0.021	5	1.119
16 Construction	39	0.012	5	1.098
17 Retail and Wholesale	37	0.018	5	1.137
18 Transportation	503	0.059	5	1.011
19 Other Services	63	0.009	5	1.596

Return

